不管是直击雷还是感应霄都与带电的云层存在分不开,带电的云层称为雷云。有关雷云形成的假说很多,但至今尚未有-种被公认为无懈可击的完整学说,这里我们只?绍其中被认为比较完善并经常被推荐的假说。
根据大量科学测试可知,地球本身就是一个电容器。通常大地稳定地带负电荷50万C左右,而地球上空存在一个带正电的电离层,这两者之间便形成一一个已充电的电容器,它们之间的电压为300KV左右,并且场强为上正下负当地面含水蒸的空气受到炽热的地面烘烤受热而上升,或者较温暖的潮湿空气与冷空气相遇而被垫高都会产生向上的气流。
这些含水蒸气的上升气流升时温度逐渐下降形成雨滴、冰雹(称为水成物), 这些水成物在地球静电场的作用下被极化(如左图),负电荷在上,正电荷在下,它们在重力作用下落下的速度比云滴和冰晶(这二者称为云粒子)要大,因此极化水成物在下落过程中要与云粒子发生碰撞。
碰撞的结果足其中一部分云粒子被水成物所捕获,增大了水成物的体积,另一部分未被捕获的被反弹回去。而反弹回去的云粒子带走水成物前端的部分正电荷,使水成物带上负电荷。由于水成物下降的速度快。而云粒子下降的速度慢,因此带正、负两种电荷的微粒逐渐分离(这叫重力分离作用),如果遇到上升气流,云粒子不断上升,分离的作用更加明显。最后形成带正电的云粒子在云的上部,而负电的水成物在云的下部,或者带负电的水成物以雨或雹的形式下降到地面。当上面所讲的带电云层一经形成,就形成雷云空间电场,空间电场的方向和地面与电离层之间的电场方向足一致的,都是上正下负,因而加强了大气的电场强度,使大气中水成物的极化更厉害、在上升气流存在的情况下更加剧力分离作用,使雷云发展得更快。
从上面的分析,好像雷云总是上层带正电荷,下层带负电荷。实际上气流并不单是只有上下移动,而比这种运动更为复杂。因此雷云电荷的分布也比上面讲的要复杂得多。
根据科学工作者大量直接观测的结果,典型的霄云中的电荷分布大体如右图所示。左端是按理论归纳的理想模式,右面是雷云常见的电荷实际分布:
H一相对地面的高度; 1-水平距离; c-库仑